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Abstract. As a function of the ratioR of bulk and surface interactions and the ratioD of
bulk and surface crystal field we have determined, within the framework both of the mean-field
approximation and by renormalization-group techniques, various types of phase diagram of a three-
dimensional semi-infinite ferromagnetic spin-3/2 Blume–Capel model. We found that there exist
four main types of phase diagram showing a variety of phase transitions associated with the surface
and unusual multicritical topologies, including ordinary, extraordinary, surface and special phase
transitions. Moreover, in the(R, D) plane, we determined the domains in which the system exhibits
a particular type of phase diagram.

1. Introduction

Surface magnetism is an interesting problem which has been the subject of numerous theoretical
and experimental studies. Detailed review articles containing an extensive list of references
have been published by Binder [1] and Diehl [2]. Most works have been devoted to systems
which undergo second-order phase transitions. A relatively small number of papers have
considered semi-infinite systems exhibiting first-order and tricritical phase transitions. Of
particular interest is the spin-1 Ising model with bilinear and biquadratic nearest-neighbour
pair interactions and a single-ion potential, known as the Blume–Emery–Griffiths (BEG) model
[3]. The model with vanishing biquadratic interactions is called the Blume–Capel (BC) model
[4, 5]. If such systems are bounded by a surface, the local critical and tricritical behaviours
are modified in the vicinity of that surface. Those semi-infinite systems have not been studied
as extensively as the pure systems, and the theory of surface magnetism seems to be far from
complete, although some progress has been noted recently [6, 7].

An extension of the BEG and BC models is the possibility of inclusion of higher spin values.
The spin-3/2 BEG model was initially introduced in connection with experimental results on
magnetic and crystallographic phase transitions in some rare-earth compounds such as DyVO4,
and then extended to describe tricritical properties in ternary fluid mixtures. It has been
analysed using a variety of approximations and mathematical techniques, including the mean-
field approximation (MFA) [8, 9], real-space renormalization-group (RSRG) calculations [10]
and Monte Carlo simulations [9]. Almost no attempts are available in the literature concerning
the most interesting problem where we have to consider this model on semi-infinite lattices,
with different couplings at the surface and in the bulk. It is our purpose to perform such a
study and to check whether such systems can exhibit surface magnetism. Using the MFA and
an RSRG method based on the Migdal–Kadanoff (MK) [11, 12] recursion relations, we study
the criticality associated with the spin-3/2 BC model on a semi-infinite three-dimensional
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hypercubic lattice. As in the case of the spin-1/2 Ising model, we have shown four different
types of phase transition associated with the surface, which can be designated using the
same known terminology [13, 14], namely, the ordinary transition with simultaneous onset
of bulk and surface order, the surface transition where the surface orders first, the subsequent
extraordinary transition where the bulk orders in the presence of an already ordered surface
and the special transition with bulk and surface ordering at the same temperature but with a
different set of critical exponents.

According to the values of the ratioR of bulk and surface interactions and the ratioD of
bulk and surface crystal fields, we have determined various types of phase diagram featuring
a variety of phase transitions associated with the surface, with critical and special transition
points. However, our analysis has led to a classification scheme with four fundamental types
of phase diagram some of which we have illustrated in the(J−1

S , 1SJ
−1
S ) plane, where the

subscriptS refers to the surface. Finally in the(R, D) plane we have determined the domains
in which the system exhibits a particular type of phase diagram.

The present paper is organized as follows. In section 2 we present qualitative phase
diagrams of the three-dimensional model determined within the MFA. Quantitative results
obtained from an RSRG method are shown in section 3. Finally we draw our conclusion in
section 4.

2. Mean-field phase diagrams

The three-dimensional cubic spin-3/2 BC model is described by the reduced Hamiltonian

−βH = J
∑
〈ij〉

SiSj + 1
∑

i

S2
i (1)

where each spin variableSi takes on the values±3/2 and±1/2, andJ (positive, since we
study the ferromagnetic case) is the reduced coupling constant between neighbouring spins
and1 the reduced crystal-field known to exhibit tricritical behaviour.

The different phases of the model described by the Hamiltonian (1) can be characterized
by two parameters: the magnetizationm = 〈Si〉 and the quadrupole parameterq = 〈S2

i 〉.
According to the values ofm andq the model has three different phases, and in the plane
(J −1, 1J−1) its phase diagram, determined within the MFA, is shown in figure 1. It is divided
by transition lines into three regions. Two of these are occupied by ferromagnetic phases
characterized bym 6= 0: one (labelled F3/2) has large quadrupole order parameterq, the other
(F1/2) has smallq. These distinct dense and dilute versions of the ordered phase are separated
by a first-order transition line which terminates at a critical point (C), instead of the tricritical
point obtained previously [9]. In the remaining region, the paramagnetic (m = 0) phase (P)
occurs, which is separated from the ferromagnetic phases by a single second-order transition
line.

In this paper we shall consider the three-dimensional semi-infinite cubic spin-3/2 BC
model described by the reduced Hamiltonian

−βH = JS

∑
〈ij〉

SiSj + 1S

∑
i

S2
i + JB

∑
〈kl〉

SkSl + 1B

∑
k

S2
k (2)

whereJS is the reduced coupling constant between neighbouring spins located on the two-
dimensional surface of the system, andJB is the reduced coupling constant between remaining
neighbouring spins, which is not necessary equal to the surface oneJS , and1S and1B are
reduced crystal-fields respectively at the surface and in the bulk.

If we denote respectively bymS ,mB ,qS andqB the surface and the bulk magnetizations and
quadrupole momenta per site, a straightforward calculation leads to the following mean-field
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Figure 1. Phase diagram of the three-dimensional spin-3/2 Blume–Capel model determined within
the mean-field approximation. Solid and dashed lines, respectively, indicate second- and first-order
phase transitions. The symbols P and F refer to the paramagnetic and ferromagnetic phases. C is
a critical point.

equations:
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(3)

whereα = B or S refers to the bulk or the surface, and

MB = zBJBmB

MS = zSJSmS + JBmB

with zS andzB the coordination numbers on the surface and in the bulk of the lattice.
The bulk and surface free energies per site of the semi-infinite system can be written as

FB

T
= − ln

[
2 e

1
41B cosh

(
1
2MB

)
+ 2 e

9
41B cosh

(
3
2MB

) ]
+

zB

2
JBm2

B (4)

FS

T
= − ln

[
2 e

1
41S cosh

(
1
2MS

)
+ 2 e

9
41S cosh

(
3
2MS

) ]
+

zS

2
JSm

2
S +

(zB − zS)

2
JBm2

B. (5)

The self-consistent equations (3) are solved numerically. The solution which minimizes
the free energy represents the stable equilibrium phase. If there are two solutions which have
the same minimum free energy, these phases coexist and the system has a first-order phase
transition.
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Figure 2. Type 1 phase diagram for the three-dimensional semi-infinite spin-3/2 Blume–Capel
model calculated in the mean-field approximation withR = 0.8 andD = 1.16. The symbols SP, BP,
SF and BF denote, respectively, surface paramagnetic, bulk paramagnetic, surface ferromagnetic
and bulk ferromagnetic phases. CS and CB characterize two critical points on the surface and in
the bulk, respectively.

For the semi-infinite BC model we define the ratiosR = JB/JS andD = 1B/1S and
classify the possible phase diagrams illustrated in the(J−1

S , 1SJ
−1
S ) plane at fixedR andD.

The mean-field analysis that has been undertaken suggests qualitatively interesting features of
the model. However, our analysis has led to a classification scheme with four fundamental
types of phase diagram showing ordinary, extraordinary, surface and special phase transitions.
The nature of the surface and bulk order is indicated in each region by the symbols P for
paramagnetic and F3/2 or F1/2 for ferromagnetic phases, preceded by the symbols B for bulk
and S for surface. Second-order and first-order parts of the phase boundary are shown as full
and dashed lines, respectively.

According to the values of the ratiosR andD, different qualitative types of phase diagram
are expected. To classify them we shall proceed as follows:

(1) Type 1. The system exhibits only ordinary phase transitions of second-order between
different phases F3/2, F1/2 and P. We have also shown unusual successive phase transitions of
first order, where the surface and the bulk of the system exhibit a transition between the two
ordered phases F3/2 and F1/2, terminating at two critical points CS and CB associated with
the surface and the bulk, respectively. According to the position of the critical points, three
different cases can be distinguished: (a) the transition between the ferromagnetic phases on
the surface(SF3/2 ↔ SF1/2) is realized before the one in the bulk(BF3/2 ↔ BF1/2). Thus
the surface transition line terminated at the critical point CS is inside the ferromagnetic phase
BF3/2. (b) The surface transition line(SF3/2 ↔ SF1/2) is realized inside the ferromagnetic
phase BF1/2. (c) In between these two topologies, a limit phase diagram occurs, where the
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Figure 3. A type 2 phase diagram from the global mean-field approximation calculated forR = 0.2
andD = 0.2.

Figure 4. A type 3 phase diagram calculated forR = 0.7 andD = 1.16.
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Figure 5. A type 4 phase diagram calculated forR = 0.5 andD = 0.5.

first-order transitions on the surface and in the bulk between the two ferromagnetic phases are
simultaneous. A typical phase diagram showing the various phase transitions is represented
in figure 2.

(2) Type 2. As a function of the ratiosR andD, different types of phase diagram have
been found. We have shown extraordinary and surface phase transitions of second order.
As previously three cases can be distinguished depending on the position of the first-order
transition lines separating the two ordered phases on the surface and in the bulk. Figure 3
represents a typical phase diagram.

(3) Type 3. According to the values of the ratiosR andD we have indicated in figure 4
a typical phase diagram among three qualitative types which have been determined. We have
shown ordinary, extraordinary and surface phase transitions of second order. Besides these
transitions we can observe the successive phase transitions of first order between the two
ordered phases. For two particular values of1S/JS there exist two special points (S1 and
S2) characterizing the special phase transition, where a second-order transition line meets two
second-order transition lines, particularly a line of extraordinary and surface transitions. At
these special points the surface and the bulk of the system become ordered simultaneously.

(4) Type 4. As a function of the ratiosR andD, we obtain three main qualitative types
of phase diagrams; one of them is reported in figure 5. It shows ordinary, extraordinary and
surface phase transitions of second order. The three transition lines meet at two special phase
transition points (S1 and S2).

3. Renormalization-group phase diagrams

In the preceding section we have presented phase diagrams obtained from the MFA to
understand qualitative features of the phase transitions of the model. By contrast, in this
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section we discuss renormalization-group results obtained from an RSRG transformation, in
comparison with the mean-field results. This technique is based on the MK bond-moving
approximation which consists of first performing the decimation and then moving the bonds.
In what follows, we shall only give a brief description of the method.

Choose a scale factorb and consider a one-dimensional chain of(b + 1) spins coupled
by nearest-neighbour interactions all equal toJ and a crystal field1. Perform the trace over
all spins on the chain except those at the end. The end spins are then coupled by the effective
interactionsJ̃ and1̃, which are functions ofJ and1.

In an infinited-dimensional cubic lattice Migdal argues that the renormalization-group
transformations that give the new coupling constantJ ′ and1′ as a function ofJ and1 are
simply

J ′ = bd−1 J̃ (J, 1)

1′ = bd−1 1̃(J, 1).

In the case of a semi-infinited-dimensional cubic spin-3/2 BC model described by
the Hamiltonian (2) it is straightforward to extend Migdal’s approximate recursion relations
[15, 16]. We have

J ′
B = bd−1 J̃ (JB, 1B)

1′
B = bd−1 1̃(JB, 1B)

J ′
S = bd−2 J̃ (JS, 1S) + 1

2(b − 1)bd−2 J̃ (JB, 1B)

1′
S = bd−2 1̃(JS, 1S) + 1

2(b − 1)bd−2 1̃(JB, 1B).

The renormalization-group phase diagrams are derived from the global study of flows in
Hamiltonian space, which are governed by fixed points. The various fixed points underlying the
structure of the semi-infinite system have been determined and classified, yielding first-order
phase boundaries, critical, tricritical and multicritical points (we used the Nienhuis–Nauenberg
criterion [17] for seeing first-order transitions in the RSRG method).

Using renormalization-group calculations, we have obtained four generic types of phase
diagram, illustrated in the(J−1

S , 1SJ
−1
S ) plane for several values ofR andD, reported in

figures 6(a)–(d). They show a variety of phase transitions associated with the surface and
unusual multicritical topologies, including certain types of ordinary, extraordinary and special
phase transition. To classify the different types of phase diagram, we shall proceed as follows:

(a) For R = 1.2 and D = 0.4, the corresponding phase diagram is characterized by
extraordinary and surface second-order phase transitions. Moreover, the unusual feature
of this phase diagram is the presence of two bicritical points BS and BB , respectively
on the surface and in the bulk, terminating the successive phase transitions of first order
between the two ordered phases.

(b) For R = 0.4 andD = 0.5, we have shown ordinary, extraordinary and surface phase
transitions of second order. According to the values of1S/JS , we can observe two
multicritical points S1 and S2 characterizing the special phase transitions, in addition to
the bicritical points BS and BB .

(c) ForR = 0.62 andD = 0.5, the system exhibits phase transitions between different phases
as indicated above, with the two special transition points S1 and S2. The two bicritical
points occuring in figures (a) and (b) merge into a single bicritical point B.

(d) ForR = 1.0 andD = 0.5, the system exhibits only an ordinary phase transition of second
order with the bicritical point B.

In this renormalization-group calculation, a qualitatively different sequence of phase
diagrams occurs, but these diagrams are different from the ones of the MFA. The main
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(a)

(b)

Figure 6. Typical phase diagrams for the three-dimensional semi-infinite BC model, from the
global renormalization-group technique, calculated for (a)R = 0.3 andD = 0.7, (b)R = 0.4 and
D = 0.5, (c)R = 0.62 andD = 0.5, (d)R = 1.0, D = 0.5.
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(c)

(d)
Figure 6. (Continued)

discrepancy is that no critical points, terminating the first-order transition lines into the ordered
phase, are seen. However, the RSRG shows the presence of two bicritical points BS and BB

instead of the critical points CS and CB .
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(a)

(b)

Figure 7. Domain of existence of the different types of phase diagram (a) from the mean-field
approximation, and (b) from the renormalization-group technique.
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Finally, according to the values of the parametersR andD we have indicated in figures 7(a)
and (b) the domains of existence of the different types of phase diagram which have been
determined.

4. Conclusion

We have investigated the semi-infinite ferromagnetic spin-3/2 Blume–Capel model, in the
framework both of the MFA and by an RSRG technique. Within the two approaches, we have
classified the various phase diagrams at fixedR andD, finding new types of phase diagram
featuring a variety of phase transitions and multicritical points. Finally, we have determined
the domains in which the system exhibits a particular type of phase diagram.
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